ETI

Three phase low voltage power capacitors LPC

Rated voltage: $400-525 \mathrm{~V}, 50 \mathrm{~Hz}$ (60 Hz uppon request)

Rated power: 1-50kVAr

APPLICATION

The LPC capacitors are used for reactive power factor correction of inductive consumers (transformers, electric motors, rectifiers, fluorescent lamps and many others in industrial networks) individually or assembled into automatic capacitor banks.

DESCRIPTION

LPC capacitors are manufactured with low loss metallized self-healing polypropylene film. Dry type capacitors are filled with a non-toxic an ecological polyurethane resin, this resin provides an excellent heat dissipation properties. This capacitors are mounted in aluminium housing with overpressure disconnection system. Two types of connectors, faston connector for capacitors with rated power up to 5 kVAr , for higher values above 5 kVAr screw terminal type.

FEATURES:

Self healing
Depending on the values of the constants of every dielectric, there is a limit potential difference, which all materials can manage throughout the thickness. This limit is defined as dielectric strength. Because of determined electric-power system conditions or extreme temperatures, inadmissible for the correct working of the capacitor, this voltage limit can be exceeded. Thus, the dielectric can break down and an electric arc will be formed between the plates.
The propylene film self-healing means that the electric arc will not generate a short circuit, but will evaporate the metal which surrounds the breakthrough point. This way, the isolation between plates is repaired in the latter breakthrough point. After this self-healing, the capacitor can work in normal conditions, with a capacitance leak inferior to 100 pF .

1 Electrodes
(Metallized Film)
2 Prolypylene Film
(Dielectric)
3 Electric connection
4 No metallized area

Overpressure disconnection system
In order to avoid problems caused by overvoltage, harmonics, high temperatures, etc. capacitors have been designed with an overpressure disconnection system. When the terminal cover expands, the internal connections are interrupted and disconnecting the capacitor.

Discharge resistor
When handling a capacitor, there is a need of taking into account a series of security precautions. When a capacitor is disconnected off the voltage, it remains charged with the supply voltage. If the plates are shorten and touched, they can cause a dangerous accident due to the violent discharge of the capacitor. Three-phase capacitors must also be equipped with a discharge resistor, which can discharge voltage until its maximum value is 75 V in an interval of 3 minutes as demanded by standard EN-60831-1/2. ETI's LPC capacitors already have discharge resistors, which ensure that this time is less than 2 minutes. It is therefore recommended that the reconnection time on the PFC controller should not be less than 120 s. Except in case of using extra discharge resistors (page 313).

$$
U_{(t)}=U_{0} e^{-t}
$$

Three phase low voltage power capacitors LPC									
Rated voltage at 50 Hz	Code No.	Type	Rated Power [kVAr]	Rated capacitance [uF]	Rated current [A]	D (diameter) xH (Height) [mm]	Terminal type	Weight [kg]	Packaging [pcs]
400	004656700	LPC 1 kVAr, 400V, 50Hz	1	$3 \mathrm{x} \quad 6,6$	1,4		Faston	0,75	1
400	004656701	LPC $1.5 \mathrm{kVAr}, 400 \mathrm{~V}, 50 \mathrm{HZ}$	1,5	$3 \mathrm{x} \quad 9,9$	2,2		Faston	0,75	1
400	004656702	LPC $2.5 \mathrm{kVAr}, 400 \mathrm{~V}, 50 \mathrm{HZ}$	2,5	$3 x \quad 16,6$	3,6	60×210	Faston	0,75	1
400	004656703	LPC $3 \mathrm{kVAr}, 400 \mathrm{~V}, 50 \mathrm{HZ}$	3	$3 \mathrm{x} \quad 19,9$	4,3		Faston	0,75	1
400	004656704	LPC $4 \mathrm{kVAr}, 400 \mathrm{~V}, 50 \mathrm{HZ}$	4	$3 \mathrm{x} \quad 26,5$	5,8		Faston	0,75	1
400	004656705	LPC $5 \mathrm{kVAr}, 400 \mathrm{~V}, 50 \mathrm{HZ}$	5	$3 \mathrm{x} \quad 33,2$	7,2		Faston	0,75	1
440	004656710	LPC $2.5 \mathrm{kVAr}, 440 \mathrm{~V}, 50 \mathrm{HZ}$	2,5	$3 \mathrm{x} \quad 13,7$	3,3	60×210	Faston	0,75	1
440	004656711	LPC $3 \mathrm{kVAr}, 440 \mathrm{~V}, 50 \mathrm{HZ}$	3	$3 x \quad 16,4$	3,9		Faston	0,75	1
440	004656712	LPC $4 \mathrm{kVAr}, 440 \mathrm{~V}, 50 \mathrm{HZ}$	4	$3 \mathrm{x} \quad 21,9$	5,2		Faston	0,75	1
440	004656713	LPC $5 \mathrm{kVAr}, 440 \mathrm{~V}, 50 \mathrm{HZ}$	5	$3 \mathrm{x} \quad 27,4$	6,6		Faston	0,75	1
460	004656720	LPC $2.5 \mathrm{kVAr}, 460 \mathrm{~V}, 50 \mathrm{HZ}$	2,5	$3 \mathrm{x} \quad 12,5$	3,1	60×210	Faston	0,75	1
460	004656721	LPC $3 \mathrm{kVAr}, 460 \mathrm{~V}, 50 \mathrm{HZ}$	3	$3 \mathrm{x} \quad 15,0$	3,8		Faston	0,75	1
460	004656722	LPC $4 \mathrm{kVAr}, 460 \mathrm{~V}, 50 \mathrm{HZ}$	4	$3 \mathrm{x} \quad 20,1$	5,0		Faston	0,75	1
460	004656723	LPC $5 \mathrm{kVAr}, 460 \mathrm{~V}, 50 \mathrm{HZ}$	5	$3 \mathrm{x} \quad 25,1$	6,3		Faston	0,75	1
480	004656730	LPC $2.5 \mathrm{kVAr}, 480 \mathrm{~V}, 50 \mathrm{HZ}$	2,5	$3 \mathrm{x} \quad 11,5$	3,0	60×210	Faston	0,75	1
480	004656731	LPC $3 \mathrm{kVAr}, 480 \mathrm{~V}, 50 \mathrm{HZ}$	3	$3 \mathrm{x} \quad 13,8$	3,6		Faston	0,75	1
480	004656732	LPC $4 \mathrm{kVAr}, 480 \mathrm{~V}, 50 \mathrm{HZ}$	4	$\begin{array}{lll}3 x & 18,4\end{array}$	4,8		Faston	0,75	1
480	004656733	LPC $5 \mathrm{kVAr}, 480 \mathrm{~V}, 50 \mathrm{HZ}$	5	$3 x \quad 23,0$	6,0		Faston	0,75	1
525	004656740	LPC $2.5 \mathrm{kVAr}, 525 \mathrm{~V}, 50 \mathrm{HZ}$	2,5	$3 \mathrm{x} \quad 9,6$	2,7	60×210	Faston	0,75	1
525	004656741	LPC $3 \mathrm{kVAr}, 525 \mathrm{~V}, 50 \mathrm{HZ}$	3	$3 \mathrm{x} \quad 11,5$	3,3		Faston	0,75	1
525	004656742	LPC $4 \mathrm{kVAr}, 525 \mathrm{~V}, 50 \mathrm{HZ}$	4	$3 x \quad 15,4$	4,4		Faston	0,75	1
525	004656743	LPC $5 \mathrm{kVAr}, 525 \mathrm{~V}, 50 \mathrm{HZ}$	5	$3 \mathrm{x} \quad 19,2$	5,5		Faston	0,75	1

Three Phase Capacitors

Technical data			
Standards	$\begin{aligned} & \text { IEC 60831-1/2 } \\ & \text { EN 60831-1/2 } \end{aligned}$		
Capacitance tolerance	$-5 \%+10 \%$		
Frequency	50 Hz (60 Hz upon request)		
Temperature range	$-25^{\circ} \mathrm{C} \ldots+55^{\circ}{ }^{*}$		
Dielectric losses	$\leq 0.2 \mathrm{~W} / \mathrm{kVAr}$		
Total losses	$\leq 0.45 \mathrm{~W} / \mathrm{kVAr}$		
Maximum over voltage	1,1xUn		
Maximum over current	1,5x ln		
Max. THD in voltage	2\%		
Max. THD in current	25\%		
Discharge resistance	Incorporated; ≤ 2 min to 75 V		
Connection	Delta		
Casing	Aluminium case		
Disconnection system	Overpressure		
Dielectric	Metalized polypropylene film, self-healing		
Voltage test between terminals	$2,15 \times \mathrm{Un} 2 \mathrm{sec}$.		
Voltage test terminals to case	3 KV for 10 second. AC		
Terminal type	Connector		
Inrush current	$200 \times \mathrm{ln}$		
Protection	IP 20, indoor mounting		
Humidity	Max 95\%		
Expected	120.000 Hrs. (Temp. level C)		
Altitude	Max. 2000 above sea level		
Screw terminal Tightening torque	$\leq 20 \mathrm{kVAr} 100 \mathrm{Ncm}$ $\geq 25 \mathrm{kVAr} 250 \mathrm{Ncm}$		
Ambient temperature ${ }^{\circ} \mathrm{C}$	Max	Highest mean over any period of	
		24h	1 year
	55	45	35

*Special declaration for lower temperature $\left(-40^{\circ} \mathrm{C}\right)$ available on request

Cross - section values of the connection wires shown in the table are approximate and they are valid for normal operation conditions due to technical characteristics of the equipment

\triangle ATTENTION! Parallel interconnection of two or more capacitor through the same terminals is prohibited.

Three phase low voltage power capacitors LPC with double winding

Advantages:

- Extra low size capacitors
- Triple safety
- Patented technology

Characteristics and utility:

- Three phase capacitor dual winding internally delta connected
- Discharge resistors incorporated
- Reactive power factor correction
- Dry type
- Connector type terminal
- Indoor mounting

Triple safety:

- Overpressure disconnection system
- Protection by internal fuses
- DWCAP system (patented) internal windings displacement

Construction and materials:

- Low losses metallized self-healing polypropylene film, high density, high temperature and greater dielectric resistance volt $/ \mu$
- Polyurethane self-extinguishing resin V0, developed under standard UL94
- Aluminium case with botton fixing M12x16

Standards:

- IEC 60831-1/2

■ EN 60831-1/2

Certifications:

